Image based phenotyping during winter: a powerful tool to assess wheat genetic variation in growth response to temperature

Author:

Grieder Christoph,Hund Andreas,Walter Achim

Abstract

Having a strong effect on plant growth, temperature adaption has become a major breeding aim. Due to a lack of efficient methods, we developed an image-based approach to characterise genotypes for their temperature behaviour in the field. Twenty-nine winter wheat (Triticum aestivum L.) genotypes were continuously monitored at 3-day intervals on a plot basis during early growth from November to March using a modified digital camera. Canopy cover (CC) was determined by segmentation of leaves in calibrated images. Relative growth rates (RGR) of CC were then calculated for each measurement interval and related to the respective temperature. Also, classical traits used in plant breeding were assessed. Measurements of CC at single dates were highly repeatable with respect to genotype. For the tested range of temperatures (0−7°C), a linear relation between RGR and temperature was observed. Genotypes differed for base temperature and increase in RGR with rising temperature, these two traits showing a strong positive correlation with each other but being independent of CC at a single date. Our simple approach is suitable to screen large populations for differences in growth response to environmental stimuli. Furthermore, the derived parameters reveal additional information that cannot be assessed by usual measurements of static size.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3