Framework for a savanna burning emissions abatement methodology applicable to fire-prone miombo woodlands in southern Africa

Author:

Russell-Smith Jeremy,Yates Cameron,Vernooij Roland,Eames Tom,Lucas Diane,Mbindo Keddy,Banda Sarah,Mukoma Kanembwa,Kaluka Adrian,Liseli Alex,Mafoko Jomo,Lekoko Othusitse,Beatty Robin,Kaestli Mirjam,van der Werf Guido,Ribeiro Natasha

Abstract

Background and aims To assess development of a robust emissions accounting framework for expansive miombo woodland savannas covering ~2 million  km2 of southern Africa that typically are burnt under relatively severe late dry season (LDS) conditions. Methods A detailed site-based study of fuel accumulation, combustion and greenhouse gas (GHG) emission factor parameters under early dry season (EDS) and LDS conditions along a central rainfall-productivity and associated miombo vegetation structural and floristics gradient, from lower rainfallsites in northern Botswana to higher rainfall sites in northern Zambia. Key results Assembled field data inform core components of the proposed emissions reduction framework: fuel and combustion conditions sampled across the vegetation/productivity gradient can be represented by three defined Vegetation Fuel Types (VFTs); fuel accumulation, combustion and emissions parameters are presented for these. Applying this framework for an illustrative case, GHG emissions (t CO2-e) from EDS fires were one-third to half those of LDS fires per unit area in eligible miombo VFTs. Conclusions Our accounting framework supports undertaking EDS fire management to significantly reduce emissions and, realistically, burnt extent at landscape scales. We consider application of presented data to development of formal emissions abatement accounting methods, linkages with potential complementary woody biomass and soil organic carbon sequestration approaches, and necessary caveats concerning implementation issues.

Funder

Netherlands Organisation for Scientific Research (NWO)

Dept Foreign Affairs & Trade, Australian Govt

Corporate Carbon, Australia

Green Climate Fund

KNAW AMMODO, Netherlands

Publisher

CSIRO Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3