Inability of fire to control vegetation dynamics in low-productivity mulga (Acacia aneura)-dominated communities of eastern Australia

Author:

Silcock J. L.,Drimer J.,Fraser J.,Fensham R. J.

Abstract

Reduced fire frequency and severity associated with livestock grazing are cited as a cause of woody plant encroachment and thickening in rangelands, but such paradigms are difficult to test experimentally owing to limited opportunities to burn. Mulga (Acacia aneura) dominates 25% of the Australian continent and epitomises this quandary. We measured the effect of rare wildfires on tree and shrub mortality and subsequent regeneration in mulga-dominated communities to critically examine prevailing but unsubstantiated paradigms of vegetation structural change. Mortality of mature mulga trees was positively correlated with fire severity, which was negatively correlated with tree basal area per hectare. High-severity fires killed the majority of mulga, but only occurred in more open areas, whereas low-severity fires typical of many mulga communities did not kill substantial proportions of mature mulga. The majority of mulga saplings were killed across all sites regardless of fire severity. Seedling germination was stimulated by fire, but not dependent on it. Green turkey bush (Eremophila gilesii) was the only shrub species with >50% mortality across all sites. Combined with the rarity of fire events in the historical record, our results, particularly limited fire mortality and enhanced post-fire seedling recruitment, suggest that the role of fire in shaping vegetation structure in mulga-dominated communities has been overstated. The decoupling of fire and vegetation structure is consistent with emerging regional studies in low-productivity semiarid environments.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3