Extractability of Polycyclic Aromatic Hydrocarbons in Sediments: A Matter of Association?

Author:

Ahrens Michael J.,Hickey Christopher W.

Abstract

Bioavailability and accumulation of sediment-bound polycyclic aromatic hydrocarbons (PAHs) by benthic biota are closely related to their extractability by water or mild aqueous solvents. Nevertheless, PAH accumulation by benthic organisms is sometimes considerably different from predictions based on an equilibrium partition coefficient KOC between water and bulk sedimentary organic carbon (OC). We present evidence that PAH extractability is strongly affected by the type of OC acting as a sorbent. We compared extractability of spiked [14C]fluoranthene from a variety of natural and man-made OC matrices, including bulk sediment organic carbon, peat moss, power plant fly ash, diesel soot, petroleum/natural gas soot, coal dust, and carbon black. Artificial sediments were prepared from glass beads amended with equal weight percentages (2%) of nine different types of OC. Amended sediments were spiked with [14C]fluoranthene and batch-extracted with seawater and 0.5% sodium dodecyl sulfate (SDS) after 65 and 12 h of equilibration, respectively. Fluoranthene extractability by seawater ranged between 0.03% and 0.9%, corresponding to a 50-fold variation of apparent KOC, and 0.03–18% for SDS. Correlation between seawater and SDS extraction efficiencies was weak, suggesting differences in the mechanism of solubilization. These results demonstrate that use of a single value of KOC to predict bioavailability of fluoranthene should be avoided, and that attempts to extrapolate PAH extractability from water-only extraction experiments to aqueous solutions containing surface-active dissolved organic carbon, such as the gut fluids of deposit feeding macrofauna, is very likely to lead to erroneous predictions.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3