Long-term benefits of limestone applications to soil properties and to cereal crop yields in southern and central New South Wales

Author:

Conyers M. K.,Mullen C. L.,Scott B. J.,Poile G. J.,Braysher B. D.

Abstract

The cost of buying, carting and spreading limestone, relative to the value of broadacre crops, makes investment in liming a questionable proposition for many farmers. The longer the beneficial effects of limestone persist, however, the more the investment in liming becomes economically favourable. We re-established previous lime trials with the aim of measuring the long-term effects of limestone on surface acidity (pH run-down), subsurface acidity (lime movement) and grain yield. The study made use of experiments where there was adequate early data on soil chemical properties and cereal yields. We report data from 6 trials located at 4 sites between Dubbo and Albury in New South Wales. The rate of surface soil (0–10 cm) pH decline after liming was proportional to the pH attained 1 year after liming. That is, the higher the pH achieved, the more rapid the rate of subsequent pH decline. Since yields (product removal) and nitrification (also acid producing) may both vary with pH, the post-liming pH acts as a surrogate for the productivity and acid-generating rate of the soil–plant system. The apparent lime loss rate of the surface soils ranged from the equivalent of nearly 500 kg limestone/ha.year at pH approaching 7, to almost zero at pH approaching 4. At commercial application rates of 2–2.5 t/ha, the movement of alkali below the layer of application was restricted. However, significant calcium (Ca) movement sometimes occurred to below 20 cm depth. At rates of limestone application exceeding the typical commercial rate of 2.5 t/ha, or at surface pH greater than about 5.5, alkali and Ca movement into acidic subsurface soil was clearly observed. It is therefore technically feasible to ameliorate subsurface soil acidity by applying heavy rates of limestone to the soil surface. However, the cost and risks of this option should be weighed against the use of acid-tolerant cultivars in combination with more moderate limestone rates worked into the surface soil.There was a positive residual benefit of limestone on cereal grain yield (either barley, wheat, triticale, or oats) at all sites in both the 1992 and 1993 seasons. While acid-tolerant cultivars were less lime responsive than acid-sensitive ones, the best yields were generally obtained using a combination of liming and acid-tolerant cultivars.The long-term residual benefits of limestone were shown to extend for beyond 8–12 years and indicate that liming should be profitable in the long term.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3