Organic amendments improved soil properties and native plants’ performance in an Australian degraded land

Author:

Larsen Jonas,Rezaei Rashti MehranORCID,Esfandbod Maryam,Chen ChengrongORCID

Abstract

Context Land degradation poses a substantial threat to both the sustainable environment and human health. Efforts towards rehabilitation and remediation often require addition of soil amendments and careful selection of plant species. Aims We assessed the effect of recycled organic amendments on improvement of soil physicochemical properties and performance of native plant species in an Australian degraded soil. Methods A glasshouse pot experiment investigated the effects of compost (CO), biochar (BC), and compost-biochar (COBC) mixture on performance of three native Australian plant species (Eucalyptus tereticornis (EU), Acacia leiocalyx (AC), and Banksia integrifolia (BA)) in a degraded soil. Key results Application of CO, BC, and COBC organic amendments increased soil dissolved organic carbon and microbial biomass carbon contents compared to the control treatment. COBC amendment increased nutrient retention and reduced CO2 emissions compared to CO amendment. BC amendment also resulted in low CO2 emissions similar to the control treatment, where no significant differences were observed. AC outperformed the EU and BA species in biomass production due to its leguminous nature, with amendment application had an insignificant effect on AC performance. Within the EU treatments, the COBC:EU demonstrated the highest biomass production, followed by CO:EU, BC:EU, and CK:EU, respectively. Conclusion All amendments exhibited overall improvements in soil and plant parameters, with more significant outcomes observed with COBC application. However, the observed improvements from biochar application were minimal in this short-term experiment, which may not have allowed for the manifestation of long-term benefits. Implications Further research is warranted to investigate the effects of compost and biochar amendments on diverse soil types and native plant species.

Publisher

CSIRO Publishing

Reference56 articles.

1. Nutrient limitation on terrestrial plant growth–modeling the interaction between nitrogen and phosphorus.;New Phytologist,2012

2. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter.;Waste Management,2017

3. Recycling organic wastes to agricultural land as a way to improve its quality: a field study to evaluate benefits and risks.;Waste Management,2017

4. Carbon stocks in mined area reclaimed by leguminous trees and sludge.;Revista Árvore,2017

5. Barson M, Bordas V, Randall L (2000) ‘Land cover change in Australia: results of the collaborative bureau of rural sciences-state agencies’ project on remote sensing of agricultural land cover change.’ (Bureau of Rural Sciences: Canberra)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3