Arsenosugars and arsenolipids are formed simultaneously by the unicellular alga

Author:

Glabonjat Ronald A.ORCID,Duncan Elliott G.,Krikowa Frank,Francesconi Kevin A.,Maher William A.

Abstract

Environmental context Arsenic is a globally distributed element, occurring in various chemical forms with toxicities ranging from harmless to highly toxic. We conducted 48-h cell culture experiments under batch and continuous conditions using the ubiquitous marine unicellular alga Dunaliella tertiolecta and evaluated the alga’s arsenic metabolome over time. We found that the alga first methylates the inorganic As taken up from the surrounding water, and then further metabolises the intermediate simultaneously into more complex organo-arsenic molecules like sugars and lipids. These time series experiments are valuable pieces in the puzzle of how algae bio-metabolise arsenic, and in our understanding of the global arsenic cycle. Rationale The uptake of arsenate by algae from oceanic waters and its transformation to arsenosugars and arsenolipids is well established, but the biosynthetic pathways remain largely unknown. Methodology We investigated these pathways by using time-series experiments over 48 h to follow the formation of organoarsenic species from arsenate-enriched medium (15 µg As L−1) by the unicellular alga Dunaliella tertiolecta cultured under batch and continuous culture conditions. We used complementary mass spectrometry methods for the determination and quantification of 14 arsenic species; an additional three species could be quantified but remained unidentified. Results The alga rapidly methylated the arsenate to dimethylarsinate (DMA), which then served as the precursor to arsenosugars and arsenolipids; the concentrations of these complex organoarsenicals increased throughout the experiments accompanied by a concomitant reduction in DMA concentrations. The pattern of compounds formed by the alga was similar for both batch and continuous cultures, but the concentrations were 2–3-fold higher in the continuous culture samples and the increases with time were much clearer. Discussion The data suggest that the arsenosugars and the arsenolipids were mostly formed simultaneously from DMA, although there was an indication that the arsenic phospholipids were at least partly also being formed from the arsenosugars. Overall, the data are consistent with a direct biosynthesis of DMA from arsenate by D. tertioleta, and thereafter a non-specific incorporation of DMA into commonly available alga metabolites encompassing various sugars and lipids.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3