Recruitment of myosin VIII towards plastid surfaces is root-cap specific and provides the evidence for actomyosin involvement in root osmosensing

Author:

Wojtaszek Przemysław,Anielska-Mazur Anna,Gabryś Halina,Baluška František,Volkmann Dieter

Abstract

The existence of a cell wall–plasma membrane–cytoskeleton (WMC) continuum in plants has long been postulated. However, the individual molecules building such a continuum are still largely unknown. We test here the hypothesis that the integrin-based multiprotein complexes of animal cells have been replaced in plants with more dynamic entities. Using an experimental approach based on protoplast digestion mixtures, and utilising specific antibodies against Arabidopsis ATM1 myosin, we reveal possible roles played by plant-specific unconventional myosin VIII in the functioning of WMC continuum. We demonstrate rapid relocation (less than 5 min) of myosin VIII to statolith surfaces in maize root-cap cells, which is accompanied by the reorganisation of actin cytoskeleton. Upon prolonged stimulation, myosin VIII is also recruited to plasmodesmata and pit-fields of plasmolysing root cap statocytes. The osmotic stimulus is the major factor inducing relocation, but the cell wall–cytoskeleton interactions also play an important role. In addition, we demonstrate the tight association of myosin VIII with the surfaces of chloroplasts, and provide an indication for the differences in the mechanisms of plastid movement in roots and leaves of plants. Overall, our data provide evidence for the active involvement of actomyosin complexes, rooted in the WMC continuum, in the cellular volume control and maintenance of spatial relationships between cellular compartments.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3