Late Neogene Climates in Australia: Fossil Pollen- and Spore-based Estimates in Retrospect and Prospect

Author:

Macphail M. K.

Abstract

Australian sites that are claimed to preserve evidence of fossil spores and pollen for Late Neogene (Late Miocene, Pliocene) climates, mostly lack one or both of the prerequisites, i.e. accurate dating and continuous preservation of plant microfossils. Nevertheless, the available data confirm that climatic gradients closely parallelled those of the present day in direction although not in strength: broad-scale vegetation successions are ecologically consistent with long-term cooling and (middle to high latitudes) drying trends in global climate. Although it is rarely possible to establish precise meteorological values for the individual sites along these gradients, climatic envelopes can be estimated for many localities. For example, during the Late Miocene–Pliocene, mean annual precipitation along the northern margin appear to range from 600 mm to 1500 mm in the Kimberley region of north-western Western Australia to above 2000–3000 mm on the Atherton Tableland, north-eastern Queensland. If these and other estimates are correct, then environments along the northern margin show only gradual (unidirectional?) change or did not fall below biologically critical thresholds during the Late Miocene and Early Pliocene but began to approach modern values during Late Pliocene time. Whether the observation implies that meteorological controls at this time were similar to modern synoptic scale systems is unknown. Climates along the southern margin were more labile. For example, there is unequivocal evidence that Early Pliocene climates in the Bass Strait region were effectively more humid and warmer than at present, possibly resembling conditions now found on the northern New South Wales and southern Queensland coast. This phase was preceded (weak evidence) and succeeded (strong evidence) by less temperate conditions during the Late Miocene and Late Pliocene respectively. Forcing factors appear to include changes in relative sea level, orographic effects and, speculatively, remote events such as the isolation and reconnection of the Mediterranean Sea to the world ocean. One promising direction for future research is provided by a recently located onshore basin in Western Australia which preserves an extraordinarily long (100 m), detailed sequence of Late Neogene palynofloras.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3