Past and future coastal flooding in Pacific Small-Island Nations: insights from the Pacific Sea Level and Geodetic Monitoring (PSLGM) Project tide gauges

Author:

Ritman MathildeORCID,Hague BenORCID,Katea Tauala,Vaaia Tavau,Ngari Arona,Smith Grant,Jones David,Tolu Léna

Abstract

Sea level rise is increasing the frequency of coastal flooding globally, and low-lying communities are particularly vulnerable. We present an assessment of historical and projected changes in coastal flooding in 11 Pacific small-island nations, using tide gauge data from the Australian Bureau of Meteorology. We derive impact-, event- and percentile-based thresholds to calculate historical exceedance frequencies. Projections of future exceedance frequencies are then made using the recent suite of Shared Socioeconomic Pathways (SSPs) emission scenarios (Sixth Assessment Report). We find that exceedances of the percentile thresholds have increased in the last decade at all locations, with sites seeing exceedances in months where exceedances were previously rare or unseen in the sea level record. In the future, daily threshold exceedances occur after 50–115 cm of sea level rise, depending on location. Such levels are currently projected to be reached between 2080 and 2130 according to high emissions scenario SSP5–8.5. Low emissions scenario, SSP1–1.9, shows sea level rise resulting in 25–75 days of exceedances by 2050 for the 11 locations. This increased frequency of coastal flooding highlights the changing nature of coastal flood risk in the Pacific, with extreme weather and wave events being increasingly unnecessary for inundation to occur. Further, this work highlights how underlying increases in coastal flooding frequency pose a growing risk of exacerbating inundation associated with extreme weather or waves. Better flood monitoring and reporting will improve the accuracy of impact thresholds, strengthening the relevance of the results presented here for coastal emergency and planning managers.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

Reference49 articles.

1. Amplification of flood frequencies with local sea level rise and emerging flood regimes.;Environmental Research Letters,2017

2. An analysis of tropical cyclone occurrence in the Southern Hemisphere derived from a new satellite-era data set.;International Journal of Remote Sensing,2012

3. Etches M (2021) Heavy rain causes flash floods. In , 24 February 2021. Available at [Verified 14 January 2022]

4. Wishful sinking: disappearing islands, climate refugees and cosmopolitan experimentation.;Asia Pacific Viewpoint,2010

5. Fennell J (2021) Expert warns La Niña likely to see coastal flooding in Pacific continue for months. In , 9 December 2021. [Broadcast] Available at

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3