Coculture of porcine cumulus–oocyte complexes with porcine luteal cells during IVM: effect on oocyte maturation and embryo development

Author:

Teplitz G. M.,Lorenzo M. S.,Maruri A.,Cruzans P. R.,Carou M. C.ORCID,Lombardo D. M.ORCID

Abstract

Coculture with somatic cells is an alternative to improve suboptimal invitro culture conditions. In pigs, IVF is related to poor male pronuclear formation and high rates of polyspermy. The aim of this study was to assess the effect of a coculture system with porcine luteal cells (PLCs) on the IVM of porcine cumulus–oocyte complexes (COCs). Abattoir-derived ovaries were used to obtain PLCs and COCs. COCs were matured invitro in TCM-199 with or without the addition of human menopausal gonadotrophin (hMG; C+hMG and C-hMG respectively), in coculture with PLCs from passage 1 (PLC-1) and in PLC-1 conditioned medium (CM). In the coculture system, nuclear maturation rates were significantly higher than in the C-hMG and CM groups, but similar to rates in the C+hMG group. In cumulus cells, PLC-1 coculture decreased viability, early apoptosis and necrosis, and increased late apoptosis compared with C+hMG. PLC-1 coculture also decreased reactive oxygen species levels in cumulus cells. After IVF, monospermic penetration and IVF efficiency increased in the PLC-1 group compared with the C+hMG group. After invitro culture, higher blastocysts rates were observed in the PLC-1 group. This is the first report of a coculture system of COCs with PLCs. Our model could be an alternative for the conventional maturation medium plus gonadotrophins because of its lower rates of polyspermic penetration and higher blastocysts rates, key issues in porcine invitro embryo production.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3