Phloem mobility of crop protection products

Author:

Lichtner Frank

Abstract

Phloem mobility of a crop protectant is an attribute that contributes positively to its efficacy. Herbicides, insecticides and fungicides, generally organic molecules of small molecular weight, are applied foliarly and often must move to remote plant parts (such as meristems, emerging leaves, roots and fruits) via the phloem to achieve economically useful activity. In addition, insecticides must move within the phloem to be effective against piercing and sucking insects. Conversely, phloem mobility of crop protectants and their metabolites can also contribute to detectable residues in raw agricultural commodities. This is especially true of compounds that are biologically stable and applied during fruit development or seed set. Thus, the knowledge of phloem mobility allows an understanding of potential benefits (efficacy) and potential risks (dietary exposure) of a crop protection chemical. The customers for this knowledge range from the discovery chemist and biologist (who participate in the design of the chemical), through to the regulatory official (who grants permission to sell) and the farmer, the ultimate beneficiary of the technology. One can estimate or predict phloem mobility (based on physical/chemical properties and molecular structure) using a number of models, or measure it directly (in whole plants or explants) with a variety of techniques. In the future, crop protection and crop production technology will increasingly rely on effective transport of macro-molecules, such as protein toxins for insect control and mRNA for signal initiation and coordination of growth and development processes. Phloem mobility will be equally important for these macromolecules and for the small molecules that currently control pests and influence plant growth and development. Understanding the processes that control macromolecular transport in the phloem will lay the foundation for effective use of this technology in the decades to come.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3