Optimisation of orthophosphate and turbidity removal using an amphoteric chitosan-based flocculant–ferric chloride coagulant system

Author:

Agbovi Henry K.,Wilson Lee D.ORCID

Abstract

Environmental contextThe fate and build-up of phosphate nutrients in aquatic environments is an urgent environmental problem affecting global water security. This study, guided by a statistical design method, optimises the flocculation properties of a biopolymer for removing orthophosphate from water. This improved technology has potential widespread applications for removal of orthophosphate from water and wastewater treatment systems. AbstractA coagulation-flocculation process was employed to remove turbidity (Ti) and orthophosphate (Pi) in aqueous media using a ferric chloride (FeCl3) and a grafted carboxymethyl chitosan (CMC) flocculant system. The amphoteric CMC-CTA flocculant was synthesised by grafting 3-chloro-2-hydroxypropyl trimethylammonium chloride (CTA) onto the biopolymer backbone of CMC. Here, CMC-CTA denotes the covalent grafting of CTA onto CMC. Optimisation of the variables for Pi and Ti removal was conducted using a jar test system based on the experimental design obtained from the response surface methodology (RSM). The Box–Behnken design was used to evaluate the individual and interactive effects of four independent variables: CMC-CTA dosage, FeCl3 dosage, pH and settling time. The RSM analysis showed that the experimental data followed a quadratic polynomial model with the following optimal conditions: [CMC-CTA]=3.0mgL−1, [FeCl3]=10.0mgL−1, pH 6.8 and settling time=35min. Optimum conditions led to a Pi removal of 96.4% and turbidity removal of 96.7% based on the RSM optimisation, in good agreement with experimental results with an initial concentration of 30.0mg PiL−1. The coagulation-flocculation process is characterised by a combination of electrostatic charge neutralisation, polymer bridging and a polymer adsorption mechanism.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3