Abstract
Background Assessments of fuel (vegetation) are needed to predict fire behaviour. Broad visual methods support quick in-field management decisions but can be too imprecise to detect variations in fuel for other purposes. Aims We evaluated the utility of integrating more comprehensive fuel measurement techniques into an existing visual fuel hazard assessment method. Methods We developed an extended method for measuring fuel hazard, including line-intercept measurements and clearer tables for assigning fuel hazard scores, and compared it with the existing Overall Fuel Hazard Assessment Guide fourth edition, which is often used in temperate Australia. Methods were tested across 69 eucalypt woodland plots of the same broad fuel type. Key results The existing method estimated higher near-surface and elevated cover compared with the extended method, but less surface cover. Assigned hazard scores changed markedly when using the clearer hazard tables. Over half the plots had differences of one or more in hazard score for surface, near-surface and elevated fuel between the existing and extended methods. Conclusions The extended method provided a more methodical and consistent approach for assessing fuel hazard, but was more time-consuming than the existing method. Implications The extended method provides an alternative method for monitoring and research purposes when data quality is important.
Funder
Victorian Department of Environment, Land, Water and Planning via the Integrated Forest Ecosystem Research program
Reference59 articles.
1. Deciphering the impact of uncertainty on the accuracy of large wildfire spread simulations.;Science of the Total Environment,2016
2. Evaluating long-term effects of prescribed fire regimes on carbon stocks in a temperate eucalypt forest.;Forest Ecology and Management,2014
3. Bureau of Meteorology (2005) Climate classification of Australia. Available at [accessed 5 March]
4. Caratti JF (2006) Cover/Frequency (CF) - Sampling Method. In ‘FIREMON: fire effects monitoring and inventory system’. (Ed. DC Lutes) p. 151. (U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station)
5. Predicting fire behaviour in dry eucalypt forest in southern Australia.;Forest Ecology and Management,2012
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献