Using autonomous underwater gliders for geochemical exploration surveys

Author:

Russell-Cargill Louise M.,Craddock Bradley S.,Dinsdale Ross B.,Doran Jacqueline G.,Hunt Ben N.,Hollings Ben

Abstract

Offshore exploration commonly uses geochemical sniffer technologies to detect hydrocarbon seepage. Advancements in sniffer technology have seen the development of submersible in-situ methane sensors. By integrating a Franatech laser methane sensor onto an autonomous underwater glider platform, geochemical survey durations can be increased, and associated exploration costs reduced. This paper analyses the effectiveness of methane detection using the integrated system and assesses its practical application to offshore hydrocarbon seep detection methods. Blue Ocean Monitoring surveyed the Yampi Shelf, an area with known oil and gas accumulations, and observed hydrocarbon seeps on the North West Shelf of Australia. Results from the survey showed a background dissolved methane concentration of 3 to 4 volumes per million (vpm). A distinct plume of methane between 30 to 84 vpm measured over 24 km2 was detected early in the survey. Three smaller plumes were also identified. Within a small plume, the highest concentration of methane was detected at 160 vpm. Methane above background levels was observed within 8 km of previously identified seeps; however, these seeps were unable to be pinpointed. Comparisons with data from previous surveys suggest similar oceanographic influences on the behaviour of the seeps, including tidal variations and the position of the thermocline. The results demonstrated that the integrated system may be used to effectively ground truth remote sensing interpretations and survey areas of interest over long durations, providing methane presence or absence results. To this effect, the integrated system may be implemented as a supporting technology for assessing the risks of further funding hydrocarbon detection surveys and focusing the area of interest before the deployment of vessel-based surveys.

Publisher

CSIRO Publishing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3