Capillary electrophoresis study of iron(II) and iron(III) polyaminocarboxylate complex speciation

Author:

Wilson Jessica M.,Carbonaro Richard F.

Abstract

Environmental contextMethods for determining iron species are integral to investigations of iron cycling processes in the environment. Capillary electrophoresis is an effective tool for determining the concentrations of various iron species in solution, but the separations are highly dependent on the electrolyte composition. This study reports the use of capillary electrophoresis to separate and quantify distinct FeII and FeIII complexes with polyaminocarboxylates. AbstractThe purpose of this study was to use capillary electrophoresis to (i) separate and quantify distinct FeII and FeIII complexes with polyaminocarboxylates and (ii) develop new methods for distinguishing between FeII and FeIII in aqueous media. A 25 mM phosphate and a 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS) background electrolyte (BGE), both buffered at pH 7.1, were each tested with 6 polyaminocarboxylate complexes with FeII and FeIII. Adequate separation of all FeIII-chelating agent complexes was observed with the MOPS BGE. With the phosphate BGE, sharp peaks were obtained for FeIII complexes with EDTA, HEDTA, DTPA and CDTA, however FeIII–EGTA showed excessive peak broadening, and FeIII–TMDTA showed no discernable peak. Mobilities of FeIII–EGTA, FeIII–EDTA and FeIII–HEDTA were much larger when the phosphate BGE was employed, providing evidence for ternary complex formation with phosphate during electromigration. For FeII, complexes with TMDTA and EGTA were adequately separated with either BGE, but separations of the other chelating agents resulted in their corresponding FeIII complexes due to rapid oxidation by molecular oxygen. These chelating agents may be used as preservatives and derivatising agents for the analysis of ferrous and ferric iron in environmental samples.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3