Abstract
Context Accurate reporting of livestock greenhouse-gas (GHG) emissions is important in developing effective mitigation strategies, but the cost and labour requirements associated with on-farm data collection often prevent this effort in low- and middle-income countries. Aim The aim of this study was to investigate the precision and accuracy of simplified activity data collection protocols in African smallholder livestock farms for country-specific enteric-methane emission factors. Method Activity data such as live weight (LW), feed quality, milk yield, and milk composition were collected from 257 smallholder farms, with a total herd of 1035 heads of cattle in Nandi and Bomet counties in western Kenya. The data collection protocol was then altered by substituting the actual LW measurements with algorithm LW (ALG), feed quality (FQ) data being sourced from the Feedipedia database, reducing the need for daily milk yield records to a single seasonal milk measurement (MiY), and by using a default energy content of milk (MiE). Daily methane production (DMP) was calculated using these simplified protocols and the estimates under individual and combined protocols were compared with values derived from the published (PUBL) estimation protocol. Key results Employing the algorithm LW showed good agreement in DMP, with only a small negative bias (7%) and almost no change in variance. Calculating DMP on the basis of Feedipedia FQ, by contrast, resulted in a 27% increase in variation and a 27% positive bias for DMP compared with PUBL. The substitutions of milk (MiY and MiE) showed a modest change in variance and almost no bias in DMP. Conclusion It is feasible to use a simplified data collection protocol by using algorithm LW, default energy content of milk value, seasonal single milk yield data, but full sampling and analysis of feed resources is required to produce reliable Tier 2 enteric-methane emission factors. Implications Reducing enteric methane emissions from the livestock is a promising pathway to reduce the effects of climate change, and, hence, the need to produce accurate emission estimates as a benchmark to measure the effectiveness of mitigation options. However, it is expensive to produce accurate emission estimates, especially in developing countries; hence, it is important and feasible to simplify on-farm data collection.
Subject
Animal Science and Zoology,Food Science
Reference24 articles.
1. Comparative performance of dairy cows in low-input smallholder and high-input production systems in South Africa.;Tropical Animal Health and Production,2018
2. A universal equation to predict methane production of forage-fed cattle in Australia.;Animal Production Science,2016
3. Milk composition for admixed dairy cattle in Tanzania.;Frontiers in Genetics,2018
4. CSIRO (2007) ‘Nutrient requirements for domesticated ruminants.’ (Eds HDM Freer, H Dove, JV Nolan) (CSIRO Publishing: Melbourne, Vic., Australia)
5. Dong H, Mangino J, McAllister TA, Hatfield JL, Johnson DE, Lassey KR, Aparecida de Lima M, Romanovskaya A (2006) Emissions from livestock and manure management. In ‘Agriculture, forestry and other land use, IPCC Guidelines for National Greenhouse Gas Inventories’. (Eds HS Eggelston, L Buendia, K Miwa, T Ngara, K Tanabe) pp. 87. (Institute for Global Environmental Strategies (IGES): Hayama, Japan)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献