RETROGRADE CONDENSATION OR WATER IMBIBITION ? A CASE STUDY OF GAS WELL PRODUCTIVITY DECLINE BEFORE AND AFTER HYDRAULIC FRACTURING

Author:

Yang Z.,Tamhane D.,Khurana A.K.,Crosby D.G.,Jones M.

Abstract

Studies have been carried out to diagnose the cause of productivity decline for the Kaimiro-1 well in the Kaimiro gas field, Taranaki Basin, New Zealand. The gas flow rate for Kaimiro-1, declined from 5 MMSCFD (0.14 Mm3 per day) in 1983 to about 0.6 MMSCFD (0.017 Mm3 per day) in 1993, immediately prior to hydraulic fracturing. While hydraulic fracturing initially increased production rates, long term post-fracture results have been disappointing. The volumetric gas-in-place for the field was estimated to be at least 100 BCF (2.83 Gm3), whereas the total cumulative gas recovery to date is 5.1 BCF (0.14 Gm3). During the production period prior to hydraulic fracturing, reservoir pressure declined from an initial 6,109 psi to 5,625 psi (42.1 MPa to 38.8 MPa). The well has produced water at low rates over its entire production history. Analysis of pressure build-up data showed a continued decline trend in effective reservoir permea­bility with time. Thus, it appeal s that the productivity decline is due to a decrease in effective permeability to gas and not to natural depletion. However, the exact origin of this decrease in effective permeability has been the subject of much controversy. Two competing theories regarding the decrease in permeabiiity have been proposed: retrograde condensation and water imbibition. Based on black oil and compositional simulation studies of pre-and post-fracture production, together with hindsight analysis of hydraulic fracturing, it is concluded that retrograde condensation is more likely to be the primary cause of productivity decline.

Publisher

CSIRO Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3