Greenhouse-gas emissions from stockpiled and composted dairy-manure residues and consideration of associated emission factors

Author:

Biala J.,Lovrick N.,Rowlings D.,Grace P.

Abstract

Emissions from stockpiled pond sludge and yard scrapings were compared with composted dairy-manure residues blended with shredded vegetation residues and chicken litter over a 5-month period at a farm in Victoria (Australia). Results showed that methane emissions occurred primarily during the first 30–60 days of stockpiling and composting, with daily emission rates being highest for stockpiled pond sludge. Cumulated methane (CH4) emissions per tonne wet feedstock were highest for stockpiling of pond sludge (969 g CH4/t), followed by composting (682 g CH4/t) and stockpiling of yard scrapings (120 g CH4/t). Sizeable nitrous oxide (N2O) fluxes were observed only when temperatures inside the compost windrow fell below ~45−50°C. Cumulated N2O emissions were highest for composting (159 g N2O/t), followed by stockpiling of pond sludge (103 g N2O/t) and yard scrapings (45 g N2O/t). Adding chicken litter and lime to dairy-manure residues resulted in a very low carbon-to-nitrogen ratio (13 : 1) of the composting mix, and would have brought about significant N2O losses during composting. These field observations suggested that decisions at composting operations, as in many other businesses, are driven more by practical and economic considerations rather than efforts to minimise greenhouse-gas emissions. Total greenhouse-gas emissions (CH4 + N2O), expressed as CO2-e per tonne wet feedstock, were highest for composting (64.4 kg), followed by those for stockpiling of pond sludge (54.5 kg) and yard scraping (16.3 kg). This meant that emissions for composting and stockpiling of pond sludge exceeded the new Australian default emission factors for ‘waste composting’ (49 kg). This paper proposes to express greenhouse-gas emissions from secondary manure-management systems (e.g. composting) also as emissions per tonne wet feedstock, so as to align them with the approach taken for ‘waste composting’ and to facilitate the development of emission-reduction methodologies for improved manure management at the farm level.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3