Author:
Vanderwall Dirk K.,Woods Gordon L.,Roser Janet F.,Schlafer Donald H.,Sellon Debra C.,Tester David F.,White Kenneth L.
Abstract
Cloning is one of several new assisted reproductive techniques being developed for clinical use in the equine industry. Potential uses of equine cloning include: (1) the preservation of genetics from individual animals that would otherwise not be able to reproduce, such as geldings; (2) the preservation of genetic material of endangered and/or exotic species, such as the Mongolian wild horse (Przewalski’s horse); and (3) because of the companion animal role that horses fill for some individuals, it is likely that some horse owners will have individual animals cloned for emotional fulfillment. Although equine cloning has been successful, like other species, it remains a very inefficient process (<3% success). In most species, the inefficiency of cloning results from a high incidence of embryonic, fetal and/or placental developmental abnormalities that contribute to extremely high rates of embryonic loss, abortion and stillbirths throughout gestation and compromised neonatal health after birth. The present review describes some of the ultrasonographic, endocrinological and histopathological characteristics of successful (produced viable offspring) and unsuccessful (resulted in pregnancy failure) cloned equine (mule and horse) pregnancies we have produced. A total of 21 cloned mule pregnancies were established using fetal fibroblast cells, whereas a total of seven cloned horse pregnancies were established using adult cumulus cells. Three of the cloned mule conceptuses were carried to term, resulting in the birth of three healthy clones. This information adds to an accumulating body of knowledge about the outcome of cloned equine pregnancies, which will help to establish when, and perhaps why, many cloned equine pregnancies fail.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献