Overexpression of rice acyl-CoA-binding protein OsACBP5 protects Brassica napus against seedling infection by fungal phytopathogens

Author:

Panthapulakkal Narayanan SarithaORCID,Alahakoon Aruni Y.,Elliott Candace E.,Russell Derek,Taylor Paul W. J.,Lo Clive,Chye Mee-LenORCID

Abstract

Context Class III acyl-CoA-binding proteins such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. The overexpression of the monocot Oryza sativa (rice) OsACBP5 in Arabidopsis and rice has been demonstrated to enhance broad-spectrum disease resistance against selected phytopathogens in OsACBP5-overexpressing (OsACBP5-OE) lines. Aims We aimed to develop transgenic rapid-cycling Brassica napus (B. napus-RC) and canola cv. Westar OsACBP5-OEs using tissue culture-based Agrobacterium-mediated transformation and to evaluate transgenic plants for resistance against Alternaria blight, blackleg and Sclerotinia rot diseases. Methods Transgenic B. napus-RC and cv. Westar OsACBP5-OEs were generated through Agrobacterium-mediated transformation using Agrobacterium strain LBA4404 harbouring a plasmid with the rice complementary DNA encoding OsACBP5 driven by the cauliflower mosaic virus 35S promoter. Alternaria blight and blackleg pathogen assays were based on infecting young cotyledons, while detached leaf assay was used to test the tolerance of B. napus plants toward Sclerotinia sclerotiorum. Key results Average transformation efficiencies of 24.2% and 29.1% were obtained for B. napus-RC and B. napus cv. Westar cotyledons respectively. OsACBP5-OE plants exhibited resistance 5 days after inoculation with Alternaria brassicae, 12 days after inoculation with Leptosphaeria maculans, and 24 h after inoculation with S. sclerotiorum. Conclusions Transformation of B. napus-RC was shown herein to be an effective trait testing platform for canola. This study also provides an insight into the usefulness of OsACBP5 in enhancing resistance to necrotrophic phytopathogens. Implications OsACBP5 can be overexpressed in other crops to generate pathogen-resistant varieties.

Funder

Research Grants Council of Hong Kong Special Administrative Region

Hong Kong Research Grants Council Area of Excellence Scheme

Wilson and Amelia Wong Endowment Fund

HKU Postgraduate Studentship

Innovation and Technology Fund

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3