Author:
Kalis Erwin J. J.,Davis Thomas A.,Town Raewyn M.,van Leeuwen Herman P.
Abstract
Environmental context. Biogels, such as those in cell walls or biofilm matrices, generally comprise negative structural charge which leads to accumulation of positively charged species, e.g. metal ions. The magnitude of the effective charge, and hence the local chemical speciation within the gel phase, is pH dependent. In situ speciation measurements in biogels, such as the model alginate studied in this work, offer a better estimate of bioavailable concentrations than does analysis of the surrounding aqueous medium.
Abstract. Many microorganisms exist in a biogel-mediated micro-environment such as a cell wall or a biofilm, in which local concentrations of ionic nutrients and pollutants differ from those in the surrounding bulk medium. The local concentration is the relevant parameter for considerations of bioavailability. These modified concentrations arise as a consequence of the negative charges within biogels which may induce a Donnan potential inside the biogel phase. For metals, the net effect on the speciation within the biogel, relative to the bulk medium, is an enhancement of the concentration of free cations. Since the structural charge in the biogel arises from protolytic functional groups, the Donnan potential is pH dependent. Here we apply in situ voltammetry to measure the free metal ion concentration inside alginate gel as a function of pH. In the pH range 3 to 7, the speciation of CdII within this model biogel can be explained by specific binding to carboxylic functional groups and electrostatic binding resulting from the Donnan potential.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献