Determination of cupric ion concentrations in marine waters: an improved procedure and comparison with other speciation methods

Author:

Tait Tara N.,Rabson Lisa M.,Diamond Rachael L.,Cooper Christopher A.,McGeer James C.,Smith D. Scott

Abstract

Environmental context A Cu ion-selective electrode is potentially an excellent tool for cupric ion measurements in salt water, but it is prone to poor reproducibility. We show that dramatic improvements can be obtained by using a Cu ion-selective electrode and a one-point calibration method that corrects for electrode fouling. The method shows promise to be used to collect data on toxic cupric ion concentrations in saltwater environments. Abstract Free Cu is often used as an indicator for potential Cu toxicity. Free ionic Cu2+ was measured using a flow-through ion-selective electrode (ISE). Four different marine samples were collected from various locations and analysed during a fixed-pH Cu titration using an external standard calibration ISE method. Free cupric determinations in the range 10–12 to 10–7molL–1 were consistent with published literature but replicate measures showed up to four orders of magnitude variability. To improve reproducibility, an internal calibration method was developed. The new method was validated using artificial seawater with added tryptophan as the model ligand. The free Cu measured using the improved method showed the same trends as the external calibration data but reproducibility increased to an order of magnitude or better. The potential applicability of this new method was also highlighted in that it matches, in the environmentally and regulatory significant range of total Cu, with a fluorescence quenching method applied to one of the four samples. The ISE data do not agree with free ion concentrations estimated from anodic stripping voltammetry (ASV) though. This suggests that, at least for these samples, ASV responded to a larger fraction of total Cu than simply the inorganic complexes. Caution should be exercised when using ASV as a proxy for bioavailability because the trends in ASV-derived free Cu did not match the free Cu as estimated by ISE. This ability to more reliably measure free Cu is significant for predicting and measuring toxicity on Cu exposure.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3