Meiosis and embryo technology: renaissance of the nucleolus

Author:

Maddox-Hyttel Poul,Bjerregaard Bolette,Laurincik Jozef

Abstract

The nucleolus is the site of rRNA and ribosome production. This organelle presents an active fibrillogranular ultrastructure in the oocyte during the growth of the gamete but, at the end of the growth phase, the nucleolus is transformed into an inactive remnant that is dissolved when meiosis is resumed at germinal vesicle breakdown. Upon meiosis, structures resembling the nucleolar remnant, now referred to as nucleolus precursor bodies (NPBs), are established in the pronuclei. These entities harbour the development of fibrillogranular nucleoli and re-establishment of nucleolar function in conjunction with the major activation of the embryonic genome. This so-called nucleologenesis occurs at a species-specific time of development and can be classified into two different models: one where nucleolus development occurs inside the NPBs (e.g. cattle) and one where the nucleolus is formed on the surface of the NPBs (e.g. pigs). A panel of nucleolar proteins with functions during rDNA transcription (topoisomerase I, RNA polymerase I and upstream binding factor) and early (fibrillarin) or late rRNA processing (nucleolin and nucleophosmin) are localised to specific compartments of the oocyte nucleolus and those engaged in late processing are, to some degree, re-used for nucleologenesis in the embryo, whereas the others require de novo embryonic transcription in order to be allocated to the developing nucleolus. In the oocyte, inactivation of the nucleolus coincides with the acquisition of full meiotic competence, a parameter that may be of importance in relation to in vitro oocyte maturation. In embryo, nucleologenesis may be affected by technological manipulations: in vitro embryo production apparently has no impact on this process in cattle, whereas in the pig this technology results in impaired nucleologenesis. In cattle, reconstruction of embryos by nuclear transfer results in profound disturbances in nucleologenesis. In conclusion, the nucleolus is an organelle of great importance for the developmental competence of oocytes and embryos and may serve as a morphological marker for the completion of oocyte growth and normality of activation of the embryonic genome.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3