Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat

Author:

Rebetzke Greg J.,Rattey Allan R.,Farquhar Graham D.,Richards Richard A.,Condon Anthony (Tony) G.

Abstract

Stomata are the site of CO2 exchange for water in a leaf. Variation in stomatal control offers promise in genetic improvement of transpiration and photosynthetic rates to improve wheat performance. However, techniques for estimating stomatal conductance (SC) are slow, limiting potential for efficient measurement and genetic modification of this trait. Genotypic variation in canopy temperature (CT) and leaf porosity (LP), as surrogates for SC, were assessed in three wheat mapping populations grown under well-watered conditions. The range and resulting genetic variance were large but not always repeatable across days and years for CT and LP alike. Leaf-to-leaf variation was large for LP, reducing heritability to near zero on a single-leaf basis. Replication across dates and years increased line-mean heritability to ~75% for both CT and LP. Across sampling dates and populations, CT showed a large, additive genetic correlation with LP (rg = –0.67 to –0.83) as expected. Genetic increases in pre-flowering CT were associated with reduced final plant height and both increased harvest index and grain yield but were uncorrelated with aerial biomass. In contrast, post-flowering, cooler canopies were associated with greater aerial biomass and increased grain number and yield. A multi-environment QTL analysis identified up to 16 and 15 genomic regions for CT and LP, respectively, across all three populations. Several of the LP and CT QTL co-located with known QTL for plant height and phenological development and intervals for many of the CT and LP quantitative trait loci (QTL) overlapped, supporting a common genetic basis for the two traits. Notably, both Rht-B1b and Rht-D1b dwarfing alleles were paradoxically positive for LP and CT (i.e. semi-dwarfs had higher stomatal conductance but warmer canopies) highlighting the issue of translation from leaf to canopy in screening for greater transpiration. The strong requirement for repeated assessment of SC suggests the more rapid CT assessment may be of greater value for indirect screening of high or low SC among large numbers of early-generation breeding lines. However, account must be taken of variation in development and canopy architecture when interpreting performance and selecting breeding lines on the basis of CT.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3