Author:
Wang Xu,Bai Feng-Yang,Sun Yan-Qiu,Wang Rong-Shun,Pan Xiu-Mei,Tao Fu-Ming
Abstract
Environmental context
Nitrous acid is an important atmospheric trace gas, but the sources and the chemical mechanisms of its production are not well understood. This study explores the effects of ammonia and water on the hydrolysis of nitrogen dioxide and nitrous acid production. The calculated results show that ammonia is more effective than water in promoting the hydrolysis reaction of nitrogen dioxide.
Abstract
The effects of ammonia and water molecules on the hydrolysis of nitrogen dioxide as well as product accumulation are investigated by theoretical calculations of three series of the molecular clusters 2NO2–mH2O (m=1–3), 2NO2–mH2O–NH3 (m=1, 2) and 2NO2–mH2O–2NH3 (m=1, 2). The gas-phase reaction 2NO2 + H2O → HONO + HNO3 is thermodynamically unfavourable. The additional water or ammonia in the clusters can not only stabilise the products by forming stable complexes, but also reduce the energy barrier for the reaction. There is a considerable energy barrier for the reaction at the reactant cluster 2NO2–H2O: 11.7kcalmol–1 (1kcalmol–1=4.18kJmol–1). With ammonia and an additional water in the cluster, 2NO2–H2O–NH3, the thermodynamically stable products t-HONO + NH4NO3–H2O can be formed without an energy barrier. With two ammonia molecules, as in the cluster 2NO2–mH2O–2NH3 (m=1, 2), the reaction is barrierless and the product complex NH4NO2–NH4NO3 is further stabilised. The present study, including natural bond orbital analysis on a series of species, shows that ammonia is more effective than water in promoting the hydrolysis reaction of NO2. The product cluster NH4NO2–NH4NO3 resembles an alternating layered structure containing the ion units NH4+NO2– and NH4+NO3–. The decomposition processes of NH4NO2–NH4NO3 and its monohydrate are all spontaneous and endothermic.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献