Author:
Reuter DJ,Loneragan JF,Robson AD,Plaskett D
Abstract
Effects of zinc supply on the distribution of zinc and dry weight among plant parts were examined during the first 55 days of vegetative development of Seaton Park subterranean clover grown in a zinc-deficient soil in a glasshouse. Symptoms of zinc deficiency first appeared in young trifoliate leaves. Zinc deficiency decreased the expansion of blades and petioles, delayed the development of leaves and lateral branches, depressed dry weights of roots and shoots, and increased the proportion of plant dry weight in roots and leaf blades. In each treatment and at each harvest, zinc concentrations varied widely amongst plant parts and with their physiological age. Plant parts also differed widely in the response of their dry matter and zinc concentrations to both zinc treatment and harvest time. It is suggested that these complex relationships explain why plant samples consisting of composite plant parts are not suitable for diagnosis of zinc deficiency. In the present experiment, zinc concentration in whole shoots was unsatisfactory for diagnosing zinc deficiency since concentrations were higher in young, zinc-deficient plants than in older, zinc-adequate plants. In young leaf blades of the same physiological age, zinc concentrations showed reasonably constant relationships with plant growth throughout the entire experiment. However, they varied two- to three-fold in leaves of different ages from the same plants. The results show the importance for diagnosis of zinc deficiency of selecting as a sample a single organ of defined physiological age. The youngest open leaf blade is recommended for diagnosis of zinc deficiency in subterranean clover.
Subject
General Agricultural and Biological Sciences
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献