Abstract
Context
Very fast chilling (VFC) involves cooling meat to approximately –1°C before the onset of rigor, and offers potential benefits compared with conventional chilling that include accelerated tenderisation, improved shelf life and reduced inventory costs. However, the practical difficulties of achieving the required temperature profile prevents adoption of VFC commercially.
Aims
The objective of this study was to determine if electrical stimulation could be a way of making VFC easier to achieve for lamb meat. The hypothesis tested was that electrical stimulation would reduce the rate of chilling required with very fast chilling by accelerating the rate of pH decline post-mortem.
Methods
The experiment was a 2 × 3 factorial design whereby 54 loins from 27 lambs were allocated to one of six different treatments: no electrical stimulation and electrical stimulation, and chilling rates to reach −1°C at 1 h (Fast), 1.5 h (Moderate) and 2.5 h (Slow) post-mortem respectively.
Key results
Without electrical stimulation, shear forces were lowest for the Moderate chilling rate; but with electrical stimulation, consistently low shear force values were obtained with all chilling rates. Muscle pH depended on treatment, although this effect also depended on the time post-mortem. Shear force depended on chilling rate only when there was no electrical stimulation. Without electrical stimulation, the optimal chilling rate was the Moderate treatment. Effects on sarcomere length accounted for some, but not all, of the effects of treatment on shear force.
Conclusions
Electrical stimulation therefore reduced the chilling rate required to optimise tenderness with VFC, and could be a component of a practical VFC regime for lamb meat.
Implications
VFC could become a practical chilling method, but only when sensory evaluation supports the favourable shear force findings established in this study. This would require evaluation of VFC at a commercial scale.
Subject
Animal Science and Zoology,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献