Indirect selection for potential yield in early-generation, spaced plantings of wheat and other small-grain cereals: a review

Author:

Fischer R. A.,Rebetzke G. J.

Abstract

Early-generation (e.g. F2–F4) selection for grain yield itself is frustrated in particular by the small amounts of seed available. However, there has long been an interest in traits related to yield and reasonably faithfully expressed in spaced planting arrangements using little seed; these are potentially useful as indirect selection criteria for yield, with the view to increasing genetic progress per unit cost. This subject is revisited in this review, targeting potential yield (yield in the absence of abiotic and biotic stresses) of small-grain cereals. A brief assessment of current breeding systems for self-pollinated crops such as wheat reveals that all have some stage during which selection among visually acceptable spaced plants has to, or could, be practiced. The relative performance of different genotypes in such spaced plantings is then explored, highlighting interactions arising from intergenotypic competition as well as from the extra space itself. The theory of indirect selection is presented, along with some practical examples. After a brief survey of possible selection traits and developments in high-throughput measurement, harvest index, fruiting efficiency and stomatal conductance (and its surrogates) are chosen for in-depth review. All three traits show promise, especially in the light of possible new ways of reducing the cost of their measurement in early generations. Remote sensing of foliage temperature for the detection of genotypic differences in stomatal conductance makes this clearly the most promising trait for thorough testing in commercial breeding populations. Such traits could be used directly or they could complement genomic selection in early generations.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3