An adsorption and thermodynamic study of ofloxacin on marine sediments

Author:

Cao Wen-Qing,Song Jun,Yang Gui-Peng

Abstract

Environmental contextOfloxacin, a widely used fluorinated antibiotic, is resistant to biodegradation and hence can accumulate in the environment. A systematic investigation of ofloxacin on marine sediments showed that sediment organic carbon and heterogeneous sites on sediments play important roles in adsorption processes. The results help our understanding of the environmental behaviour and fate of ofloxacin in marine systems. AbstractThe adsorption behaviour of ofloxacin (OFL) on marine sediments treated by different methods was investigated using batch experiments. Three factors (sediment organic carbon content, salinity and temperature) that may affect the adsorption behaviour of OFL were analysed. The equilibrium time for OFL adsorption on marine sediment in natural seawater was ~4–5h. The adsorption of OFL on all sediments with different treatments fitted the Freundlich model well. The adsorption parameter Kf value was in the order of Kf (H2O2 treatment)<Kf (H2O treatment)<Kf (HCl treatment) over the studied concentration range. The adsorption of OFL was influenced not only by the sediment organic carbon content but also by external factors such as salinity of media and temperature. The adsorption was favourably influenced by decreased salinity and temperature of seawater. The adsorption capacity of OFL on marine sediments decreased with an increase of temperature and salinity. The Kf values decreased from 33.73±1.66 to 22.54±1.12(Lkg−1)1/n when the temperature increased from 283 to 313K. The changes in standard Gibbs free energy (ΔG0) and enthalpy (ΔH0) were −6.62±0.34kJmol−1 and −7.58±0.38kJmol−1 respectively, indicating that the adsorption process of OFL was spontaneous and exothermic. The positive value of the entropy change ΔS0 (i.e. 3.38±0.17JK−1mol−1) suggests that the degree of freedom increased during the adsorption process.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3