Biochemical effects of banding limit the benefits of nitrification inhibition and controlled-release technology in the fertosphere of high N-input systems

Author:

Janke Chelsea K.ORCID,Fujinuma Ryosuke,Moody Phil,Bell Michael J.

Abstract

Enhanced efficiency fertilisers (EEFs) may have an important role in improving nitrogen (N) use efficiency in agricultural systems. The performance of EEFs when applied by broadcasting and incorporation is well documented; however, little information is available for sub-surface banded N-fertiliser. This study aimed to determine the effectiveness of EEFs within the fertosphere in several soils. This was determined by: (i) establishing the key chemical effects and N-transformation activity within a urea band, and (ii) contrasting these findings with nitrification inhibitor (NI)-coated urea and a controlled-release polymer-coated urea (PCU). A 112-day incubation experiment was conducted with the EEFs band-applied in three contrasting soils with a history of sugarcane production. In standard urea and NI-urea treated soils, the pH within the fertosphere significantly increased to a maximum of ~pH 9.2–9.3. Alkaline conditions and high ammonium concentrations promoted elevated aqueous ammonia concentrations, resulting in complete nitrification inhibition. The PCU granules released ~40% of total urea content within 14 days, followed by subsequent release at significantly lower rates. The initial rapid urea release was attributed to damaged polymer coats, while close proximity of neighbouring granules within the band may have contributed to the subsequent slower release phase through reduced concentration gradients and restricted diffusion from granules. Variation between soils suggests that soil properties such as clay content and pH buffer capacity may influence urea hydrolysis, but not nitrification. These results suggest that both NI and controlled-release technology may not have the expected impacts on N transformations and availability when applied in a concentrated band.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3