Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes

Author:

Sun Lingwei,Zhang Hao,Wang Ziyu,Fan Yixuan,Guo Yixuan,Wang Feng

Abstract

The present study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary rumen-protected l-arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation in underfed ewes is effective in enhancing fetal growth. Between Days 35 and 110 of pregnancy, 32 multiparous ewes carrying two fetuses were randomly assigned to one of four groups: a control (CG) group (n = 8; 100% National Research Council (NRC) requirements for pregnant sheep), a nutrient-restricted (RG) group (n = 8; fed 50% NRC requirements, and two treatment (ARG and NCG) groups (n = 8 in each group; fed 50% NRC requirements supplemented with 20 g day−1 RP-Arg or 5 g day−1 NCG. All ewes were killed on Day 110 of pregnancy to determine fetal weight and fetal organ weights, and metabolites and hormones in fetal plasma, amino acid concentrations in the fetal liver and longissimus dorsi muscle, and expression of mRNAs in the somatotropic axis. Maternal and fetal bodyweight and the weight of most fetal organs expressed as a percentage of bodyweight increased in response to ARG and NCG compared with values for fetuses from RG ewes. Fetal plasma concentrations of insulin, insulin-like growth factor 1, total amino acids, lactate, thyroxine, and the thyroxine/tri-iodothyronine ratio were lower in fetuses from RG ewes compared with the other treatment groups, but concentrations of growth hormone, non-esterified fatty acids, and total cholesterol were greater in fetuses from RG ewes. Maternal RP-Arg or NCG supplementation increased concentrations of amino acids in fetal tissues and expression of mRNAs for somatotropic axis proteins in fetuses from RG ewes. These findings suggest that maternal RP-Arg and NCG supplementation of underfed ewes decreases fetal IUGR by improving metabolic homeostasis of fetal endocrinology, increasing the availability of amino acids in the fetal liver and longissimus dorsi muscle and affecting the expression of somatotropic axis genes.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3