Modelling water uptake by a mature apple tree

Author:

Green S. R.,Vogeler I.,Clothier B. E.,Mills T. M.,Dijssel C. van den

Abstract

We report the results from a field experiment in which we examined the spatial and temporal patterns of water uptake by a mature apple tree (Malus domestica Borkh., 'Splendour') in an orchard. Time domain reflectometry was used to measure changes in the soil's volumetric water content, and heat-pulse was used to monitor locally the rates of sap flow in the trunk and roots of the tree. The tree's distribution of root-length density and supporting data to characterise the soil's hydraulic properties were determined for the purpose of modelling soil water movement in the root-zone under an apple tree. Experimental data are compared against the output from a numerical model of the soil water balance that uses Richards' equation for water flow, and uses a distributed macroscopic sink term for root uptake. In general, there was a very good agreement between the measured and modelled results. The apple trees consumed some 70 L of water per day during the middle of summer. The daily water use declined to about 20 L per day with the onset of autumn, coinciding with a reduced evaporative demand and an increasing number of rain days. Water movement in the root-zone soil was dominated by the water uptake via surface roots. Large changes in soil water content were also associated with each irrigation event. Our experimental data support the contention that more frequent irrigation in smaller doses will result in less water percolating through the root-zone. Such an irrigation strategy should make more efficient use of water by minimising the leaching losses. It will also be helpful for environmental protection by reducing the percolation losses of water and solute beyond the grasp of the roots.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3