Environmental stress and genetics influence night-time leaf conductance in the C4 grass Distichlis spicata

Author:

Christman Mairgareth A.,James Jeremy J.,Drenovsky Rebecca E.,Richards James H.

Abstract

Growing awareness of night-time leaf conductance (gnight) in many species, as well as genetic variation in gnight within several species, has raised questions about how genetic variation and environmental stress interact to influence the magnitude of gnight. The objective of this study was to investigate how genotype salt tolerance and salinity stress affect gnight for saltgrass [Distichlis spicata (L.) Greene]. Across genotypes and treatments, night-time water loss rates were 5–20% of daytime rates. Despite growth declining 37–87% in the high salinity treatments (300 mm and 600 mm NaCl), neither treatment had any effect on gnight in four of the six genotypes compared with the control treatment (7 mm NaCl). Daytime leaf conductance (gday) also was not affected by salinity treatment in three of the six genotypes. There was no evidence that more salt tolerant genotypes (assessed as ability to maintain growth with increasing salinity) had a greater capacity to maintain gnight or gday at high salinity. In addition, gnight as a percentage of gday was unaffected by treatment in the three most salt tolerant genotypes. Although gnight in the 7 mm treatment was always highest or not different compared with the 300 mm and 600 mm treatments, gday was generally highest in the 300 mm treatment, indicating separate regulation of gnight and gday in response to an environmental stress. Thus, it is clear that genetics and environment both influence the magnitude of gnight for this species. Combined effects of genetic and environmental factors are likely to impact our interpretation of variation of gnight in natural populations.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3