The effect of water currents on wind drag – a case study of tidal currents and sea breeze in a semi-enclosed embayment

Author:

Thurgate S. M.ORCID

Abstract

The details of how energy and momentum are exchanged at the interface between ocean surface and the atmosphere is complex and the subject of new and more complete models. The need to improve models of how wind interacts with oceans is driven in part by the growth of offshore wind farms, and the need to predict their likely performance. The geographic features of Shark Bay allow several of the factors affecting the influence of currents on wind speed to be separated and analysed. Shark Bay is the largest semi-enclosed embayment on the Australian coast. It is tidal and aligned north–south in the direction of the sea breeze. The prevailing southerly wind, and the absence of openings to the ocean in the south of the bay, limits the fetch of waves, providing waves of predictable age in the bay with an absence of longer wavelength swell. The sea breeze in this region is characterised among the strongest and most reliable anywhere in the world. Although the tide heights are not large, the geography of the bay ensures strong tidal currents. Hence Shark Bay provides an excellent opportunity to study the effects of currents on winds. This study demonstrates that the effects of the tidal current are apparent in the wind speed record. It shows that simply subtracting a 29-day running average of the particular time of day from the wind speed reveals the effect of an incoming or outgoing tide. Time-series analysis of this outcome shows the periodicity and modulation of the tides. The analysis is further improved through using the Weather Research and Forecasting (WRF) code and subtracting its predictions from the raw data. Time-series analysis of the outcome demonstrates that the resultant difference has two diurnal and two semi-diurnal components with the correct periods and amplitudes of the known tidal variations in that region of Shark Bay. Hence the neglect of the interaction between water currents and wind stress is demonstrated to produce a systematic deviation in the predictions of the WRF from the measured wind values for Shark Bay.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

Reference44 articles.

1. A three-dimensional model for the simulation of shelf sea dynamics.;Deutsche Hydrographische Zeitschrift,1985

2. Bureau of Meteorology (1997) Guidelines for the siting and exposure of metrological instruments and observing facilities – observation specification number 2013.1. Available at

3. Bureau of Meteorology (2019) Tide Predictions for Australia, South Pacific and Antarctica: Denham, WA. Available at

4. Bureau of Meteorology (2019) Tide Predictions for Australia, South Pacific and Antarctica: Useless Loop, WA. Available at

5. The tidal regime of Shark Bay, Western Australia.;Estuarine, Coastal and Shelf Science,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3