Successful use of a passive integrated transponder (PIT) system for below-ground detection of plethodontid salamanders

Author:

Connette Grant M.,Semlitsch Raymond D.

Abstract

Context Passive integrated transponder (PIT) technology allows for permanent and unambiguous marking of animals and has recently been adapted for locating tagged individuals in the field with portable detection systems. Aims We seek to assess the effects of PIT tagging on the growth and survival of plethodontid salamanders in the laboratory and to evaluate the effectiveness of this method for subterranean detection of salamanders in the field. Methods In a laboratory experiment, we assigned 36 Plethodon shermani to either a PIT tag or control group and compared survival and growth rates over the course of 9 weeks. For the field study, we implanted six Plethodon metcalfi with PIT tags and conducted surveys so as to determine their below-ground positions with a portable detector. Key results We found no effect of PIT tagging on either growth or survival in the laboratory. In the field, PIT telemetry resulted in an overall detection efficiency of 44%, with nighttime surveys yielding a greater detection efficiency than daytime surveys. This technique provided a significant improvement over traditional hand-capture because detected salamanders were rarely visible on the ground surface. Key conclusions Our study indicates that even these relatively small-bodied salamanders (range: 2.14–5.18 g) are capable of bearing PIT tag implants and confirms the results of previous studies that found no effect of PIT tagging on the health or survival of amphibians. This study further demonstrates that the use of a portable PIT detector can be an effective method for locating below-ground salamanders. Implications Because of the small size and long lifespan of PIT tags, we believe portable PIT detectors can provide researchers with an unprecedented level of detail for studies of the movement behaviour, spatial ecology and management of species that are small or otherwise challenging to detect and monitor with other techniques.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3