Evaluating the Contribution of Glutamate Dehydrogenase and the Glutamate Synthase Cycle to Ammonia Assimilation by Four Ectomycorrhizal Fungal Isolates

Author:

Turnbull MH,Goodall R,Stewart GR

Abstract

Combined gas chromatography-mass spectrometry were used to evaluate the contributions of glutamate dehydrogenase (GDH) and the glutamate synthase cycle in 15N-labelled ammonium assimilation by four ectomycorrhizal fungal isolates. In all four species (Elaphomyces, Amanita, Pisolithus and Gautieria), glutamine was the major product accumulated following transfer of 14-day-old nitrogen-limited cultures to fresh medium. Label was rapidly assimilated into fungal tissue, with rates of 733 nmol g-1 FW h-1 in Pisolithus, 972 nmol g-1 FW h-1 in Amanita, 2760 nmol g-1 FW h-1 in Gautieria and 6756 nmol g-1 FW h-1 in Elaphomyces sp in the first 4 h of incubation. Incorporation of [15N]ammonium was sensitive to the inhibitory effects of both methionine sulfoximine (MSX, an inhibitor of glutamine synthetase (GS)) and albizziin (an inhibitor of glutamate synthase (GOGAT)) in three species (Amanita, Gautieria and Pisolithus) and labelling patterns were consistent with the action of the glutamate synthase cycle in ammonium assimilation. In all three species glutamine synthesis was almost totally blocked by MSX and there was no continued incorporation of 15N into glutamate. Elaphomyces displayed high levels of total incorporation of labelled ammonium in mycelium even in the presence of MSX, although incorporation into glutamine was reduced by 88%. This inhibition of GS by MSX, in addition to its partial inhibition by albizziin suggests strongly the action of glutamate synthase cycle in ammonium assimilation. The reduction in label entering glutamate under the influence of albizziin is direct evidence for the inhibition of GOGAT activity. However, MSX treatment had the effect of increasing significantly the quantity of label recovered in both glutamate and alanine. In the absence of GS inhibition there is clearly competition for ammonium which under normal physiological conditions results in assimilation through the glutamate synthase cycle. However, when GS is blocked by MSX label is able to cycle through the GDH pathway. Extra keywords: ectomycorrhiza, ammonium assimilation, glutamate synthase cycle, glutamate dehydrogenase, amino acid metabolism.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3