Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions

Author:

Asing Janice,Saggar S.,Singh Jagrati,Bolan Nanthi S.

Abstract

Urea and organic manures such as ‘Garden galore’ (GG) are used to supply nitrogen (N) in vegetable farming and floriculture systems in New Zealand. However, a significant amount of the applied N is lost to the atmosphere via nitrous oxide (N2O) and ammonia (NH3) emissions, and leached to surface and ground water as nitrate (NO3–) contributing to environmental degradation such as global warming and eutrophication. One of the mitigation options to reduce these losses is to use nitrification inhibitors (NI). Glasshouse and laboratory incubation experiments were conducted under controlled moisture and temperature conditions to determine the effects of an NI, dicyandiamide (DCD), on N losses from urea and GG applied to lettuce grown in a Manawatu sandy soil. Nitrogen and DCD were applied at the rates of 9 and 1.3 g/m2, respectively, and the gaseous emission of N2O and NH3 were monitored over a 5-week period using a closed-chamber technique. At the end of the experiment the lettuce plant shoots and roots were harvested, and analysed for N concentration. Soils were leached with deionised water and leachates were analysed for ammonium (NH4+) and NO3–. The results showed greater loss of N as NH3 than N2O and the effect was more pronounced in the case of urea. Addition of DCD significantly reduced N2O emissions from both urea and GG, and increased NH3 emissions from both urea and GG, with the increase being significant only for urea. Addition of DCD maintained higher soil NH4+ concentration and lower NO3– concentration than without DCD. Overall, DCD was effective in reducing N losses of N2O emissions and NO3– leaching. Urea application resulted in shoot tip burning and the symptoms were enhanced with the addition of DCD. There was no significant effect of DCD addition on lettuce yield.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3