Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves

Author:

Delfine Sebastiano,Alvino Arturo,Zacchini Massimo,Loreto Francesco

Abstract

Spinach (Spinacia oleracea L.) leaves stressed by irrigation with water containing 1% (w/v) NaCl for 20 days had low conductance to CO2 diffusion both at the stomata and in the mesophyll. Mesophyll anatomy changed in salt-stressed leaves, which could have accounted for the decreased mesophyll conductance. Ribulose- 1,5-bisphosphate carboxylase/oxygenase in vitro activity and content were not affected by up to 20 days exposure to salinity but decreased when leaves were exposed to salt stress for longer than 20 days. Salt accumulation also caused a drop of Ca and Mg which might have decreased membrane stability and chlorophyll content, respectively. Measurements of chlorophyll fluorescence indicated that the 20-day-long salt stress did not directly affect photochemistry. We conclude that salinity reduces photosynthesis primarily by reducing the diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure which decreases the conductance to CO2 diffusion within the leaf. The capacity for carbon metabolism is eventually reduced but that occurs after substantial decreases in the conductance to CO2 diffusion.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3