Photosynthesis capacity diversified by leaf structural and physiological regulation between upland and lowland switchgrass in different growth stages

Author:

Cui XinORCID,Cen Huifang,Guan Cong,Tian Danyang,Liu Huayue,Zhang Yunwei

Abstract

Understanding and enhancing switchgrass (Panicum virgatum L.) photosynthesis will help to improve yield and quality for bio-industrial applications on cellulosic biofuel production. In the present study, leaf anatomical traits and physiological characteristics related to photosynthetic capacity of both lowland and upland switchgrass were recorded from four varieties across the vegetative, elongation and reproductive growth stages. Compared with the upland varieties, the lowland switchgrass showed 37–59, 22–64 and 27–73% higher performance on height, stem and leaf over all three growth stages. Leaf anatomical traits indicated that the leaves of lowland varieties provided more space for carbon assimilation and transportation caused by enhanced cell proliferation with more bundles sheath cells and larger contact areas between the bundle sheath and mesophyll cells (CAMB), which lead to the 32–72% higher photosynthetic capacity found in the lowland varieties during vegetative and elongation growth. However, photosynthetic capacity became 22–51% higher in the upland varieties during the reproductive stage, which is attributed to more photosynthetic pigment. In conclusion, lowland varieties gain a photosynthetic advantage with enhanced bundle sheath cell proliferation, while the upland varieties preserved more photosynthetic pigments. Our study provides new insights for improving the yield in crops by enhancing photosynthesis with anatomical and physiological strategies.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3