Two potato (Solanum tuberosum) varieties differ in drought tolerance due to differences in root growth at depth

Author:

Puértolas Jaime,Ballester Carlos,Elphinstone E. David,Dodd Ian C.

Abstract

To test the hypothesis that root growth at depth is a key trait explaining some genotypic differences in drought tolerance in potato (Solanum tuberosum L.), two varieties (Horizon and Maris Piper) differing in drought tolerance were subjected to different irrigation regimes in pots in a glasshouse and in the field under a polytunnel. In the glasshouse, both cultivars showed similar gas exchange, leaf water potential, leaf xylem ABA concentration and shoot biomass independently of whether plants were grown under well watered or water deficit conditions. Under well watered conditions, root growth was three-fold higher in Horizon compared with Maris Piper, 3 weeks after emergence. Water deficit reduced this difference. In the polytunnel, applying 60% or less irrigation volume compared with full irrigation significantly decreased tuber yield in Maris Piper but not in Horizon. This was coincident with the higher root density of Horizon in deep soil layers (>40 cm), where water content was stable. The results suggest that early vigorous root proliferation may be a useful selection trait for maintaining yield of potato under restricted irrigation or rainfall, because it rapidly secures access to water stored in deep soil layers. Although selecting for vigorous root growth may assist phenotyping screening for drought tolerance, these varieties may require particular environmental or cultural conditions to express root vigour, such as sufficiently deep soils or sufficient water shortly after emergence.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3