Measuring residual transpiration in plants: a comparative analysis of different methods

Author:

Hasanuzzaman Md.,Chakraborty Koushik,Zhou MeixueORCID,Shabala SergeyORCID

Abstract

Residual transpiration (RT) is defined as a loss of water through the leaf cuticle while stomata are closed. Reduced RT might be a potentially valuable trait for improving plant performance under water deficit conditions imposed by either drought or salinity. Due to the presence of stomata on the leaf surface, it is technically challenging to measure RT. RT has been estimated by the water loss through either astomatous leaf surface or isolated astomatous cuticular layers. This approach is not suitable for all species (e.g. not applicable to grasses) and is difficult and too time consuming for large-scale screening in breeding programs. Several alternative methods may be used to quantify the extent of RT; each of them comes with its own advantages and limitations. In this study, we have undertaken a comparative assessment of eight various methods of assessing RT, using barley (Hordeum vulgare) plants as a model species. RT measured by water retention curves and a portable gas exchange (infrared gas analyser; IRGA) system had low resolution and were not able to differentiate between RT rates from young and old leaves. Methods based on quantification of the water loss at several time-points were found to be the easiest and least time-consuming compared to others. Of these, the ‘three time-points water loss’ method is deemed as the most suitable for the high throughput screening of plant germplasm for RT traits.

Funder

Grain Research and Development Corporation

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3