Effects of ovarian disaggregation on adult murine follicle yield and viability

Author:

Young Fiona,Drummond John,Akers Emma,Bartle Louise,Kennedy David,Asaduzzaman Mohammad

Abstract

Follicles are isolated from ovaries for numerous reasons, including IVM, but adult murine yields are <2 follicles mg−1. The aim of the present study was to optimise ovarian disaggregation and develop methods applicable to the rapid screening of follicle viability. Ovaries from adult mice (n = 7) were halved and disaggregated mechanically, or by using collagenase IV (Col-IV; 590 U mL−1) or animal origin-free collagenase IV (AOF) at 590 or 1180 U mL−1. Isolated follicles were stained with 4′,6′-diamidino-2-phenylindole (DAPI; nuclei), chloromethyl-X-rosamine (CMXRos; mitochondria) or fluorescein isothiocyanate-conjugated anti-α-tubulin antibody. Follicle diameters and staining were measured and analysed using ImageJ, and data analysed using GraphPad Prism. Col-IV disaggregation yielded the highest number of follicles (17 ± 10 follicles mg−1 ovarian tissue). All disaggregation methods released more secondary follicles (86 ± 20 per ovary; P < 0.05) than any other size cohort. Mechanical and Col-IV disaggregation yielded similar numbers of morphologically intact follicles, whereas AOF disaggregation caused more damage (P < 0.01). As the morphological disruption increased, DAPI and CMXRos staining decreased (P < 0.05), and tubulin localisation became more heterogeneous. Col-IV disaggregation gave the best yield of morphologically intact follicles containing viable granulosa cells. In conclusion, we improved adult murine follicle yields and applied molecular markers to assess follicle morphology, cellular cytoskeleton and mitochondrial function.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3