Can changes in leaf water potential be assessed spectrally?

Author:

Elsayed Salah,Mistele Bodo,Schmidhalter Urs

Abstract

Leaf water potential (LWP) is an important indicator of plant water status. However, its determination via classical pressure-chamber measurements is tedious and time-consuming. Moreover, such methods cannot easily account for rapid changes in this parameter arising from changes in environmental conditions. Spectrometric measurements, by contrast, have the potential for fast and non-destructive measurements of plant water status, but are not unproblematic. Spectral characteristics of plants vary across plant development stages and are also influenced by environmental factors. Thus, it remains unclear whether changes in leaf water potential per se can reliably be detected spectrometrically or whether such measurements also reflect autocorrelated changes in the leaf water content (LWC) or the aerial plant biomass. We tested the accuracy of spectrometric measurements in this context under controlled climate chamber conditions in series of six experiments that minimised perturbing influences but allowed for significant changes in the LWP. Short-term exposure of dense stands of plants to increasing or decreasing artificial light intensities in a growth chamber more markedly decreased LWP than LWC in both wheat and maize. Significant relationships (R2-values 0.74–0.92) between LWP and new spectral indices ((R940/R960)/NDVI; R940/R960) were detected with or without significant changes in LWC of both crop species. The exact relationships found, however, were influenced strongly by the date of measurement or water stress induced. Thus, global spectral relationships measuring LWP probably cannot be established across plant development stages. Even so, spectrometric measurements supplemented by a reduced calibration dataset from pressure chamber measurements might still prove to be a fast and accurate method for screening large numbers of diverse lines.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3