Structural amelioration of a South Australian red-brown earth using calcium and organic amendments

Author:

Baldock JA,Aoyama M,Oades JM,Susant o,Grant CD

Abstract

The ability of wheat straw, gypsum and agricultural lime to ameliorate the unstable structural condition of a degraded red-brown earth located at the Waite Agricultural Research Institute, South Australia, was investigated in a field experiment lasting 5 years. Wheat straw was added at rates of 0, 5 and 10 t ha-1 y-1, and gypsum and agricultural lime were added at rates of 3.4 and 2.0 t ha-1 y-1 respectively. Most of the measurements were taken on samples collected after three and four consecutive years of treatment applications, but some were taken one year after the fifth and final application of the treatments. The amount of water-stable macroaggregation in the top 10 cm increased with increasing rate of wheat straw application. Addition of agricultural lime incorporated with straw temporarily increased macroaggregate stability to a greater extent than was observed with either amendment alone. The proportion of the soil surface occupied by macropores was also increased significantly by addition of agricultural lime, and this was attributed to a stimulation of biological activity in the soil due to the increased soil pH. Density fractionation of the soil suggested the turnover of the added wheat straw in the lime-treated soil was greater than in the gypsum-treated and control soils. Addition of gypsum decreased the content of mechanically dispersible clay by modifying the electrolyte concentration and composition, but was unable to completely resist the dispersive tendencies created by the decomposing organic residues. The high rates of wheat straw incorporated in the top 10 cm caused significant dispersion in the top 20 cm, which was thought to have mobilized clay particles causing them to move downward, resulting in pore blockage and the consequent lowering of hydraulic conductivity in the zone immediately below.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3