Radiation-use efficiency of irrigated biomass sorghum in a Mediterranean environment

Author:

Rinaldi Michele,Garofalo Pasquale

Abstract

Mathematical crop simulation models are useful tools in predicting the potential yield of field crops in a specific environment. The main driving parameter used to estimate biomass accumulation in most of these models is radiation-use efficiency (RUE). Biomass sorghum (Sorghum bicolor L. Moench) is a crop that can be used for energy production (thermal and bioethanol chains) and a knowledge of its RUE in different water supply conditions can help to improve model simulations and evaluate crop diffusion. A 3-year field experiment was carried out in Southern Italy where sorghum was submitted to four irrigated regimes based on actual crop evapotranspiration (ETc). In the first year ETc was measured with weighted lysimeters, while in the other 2 years it was estimated by means of estimated crop coefficient (Kc) and the reference evapotranspiration ET0. The RUE, calculated as the slope of the first-order equation between dry biomass and intercepted photosynthetically active radiation along a crop cycle, showed an average of 2.91 ± 0.54 g MJ–1, even if the RUE proved to be closely correlated with crop water consumption. The latter ranged between 891 and 454 mm and the RUE increased 4.2 mg MJ–1 per mm of water used. A high crop interception of solar radiation was observed in sorghum, reaching its maximum efficiency 40 days after sowing. To obtain high yielding yield biomass sorghum requires a large supply of water, as confirmed by the Kc calculated during the crop cycle, which resulted higher (especially in the development and middle stages) when compared with those reported in the FAO 56 Paper. The obtained RUE values also confirmed a high efficiency in biomass production of this crop, allowing for the introduction of biomass sorghum in the cropping systems of Mediterranean environments as an alternative crop for energy purposes, but with adequate irrigation water supply.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3