Modelling lead(II) sorption to ferrihydrite and soil organic matter

Author:

Gustafsson Jon Petter,Tiberg Charlotta,Edkymish Abubaker,Kleja Dan Berggren

Abstract

Environmental contextLead(II) is a toxic metal pollutant with many anthropogenic sources. We show that lead(II) is bound more strongly to soil surfaces than previously understood. This knowledge may lead to better models for lead(II) dissolution from the soils, which will improve risk assessments for this metal. AbstractLead(II) adsorption to soil organic matter and iron (hydr)oxides is strong, and may control the geochemical behaviour of this metal. Here, we report the adsorption of Pb2+ (i) to 2-line ferrihydrite, and (ii) to a mor layer. The results showed that ferrihydrite has heterogeneous Pb2+ binding. Use of a surface complexation model indicated that ~1 % of the surface sites adsorbed Pb2+ more strongly than the remaining 99 %. Although only one surface complexation reaction was used (a bidentate complex of the composition (≡FeOH)2Pb+), three classes of sites with different affinity for Pb2+ were needed to simulate Pb2+ binding correctly over all Pb/Fe ratios analysed. For the mor layer, Pb2+ sorption was much stronger than current models for organic complexation suggest. The results could be described by the Stockholm Humic Model when the binding heterogeneity was increased, and when it was assumed that 0.2 % of the binding sites were specific for Pb. Use of revised model parameters for nine Vietnamese soils suggest that lead(II) binding was more correctly simulated than before. Thus, underestimation of lead(II) sorption to both (hydr)oxide surfaces and organic matter may explain the failure of previous geochemical modelling attempts for lead(II).

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3