Author:
Shahid Muhammad,Mazhar Muhammad,Tahir Asif Ali,Rauf Muhammad Khawar,Raftery James
Abstract
A simple method of depositing morphology- and phase-tailored thin films of copper(i) oxide and metallic copper from [Cu(dmae)(TFA)]4·CH2Cl2 (1), where dmae is N,N-dimethylaminoethanolato and TFA is trifluoroacetato, on glass substrates by aerosol-assisted chemical vapour deposition is demonstrated. The tetrameric precursor 1 was synthesized and its structure was determined by single-crystal X-ray crystallography. Precursor 1 was applied for the deposition of nanostructured thin films of copper(i) oxide and copper nanowires at 250 and 375°C respectively. The deposited thin films were characterized by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray diffraction, and ultraviolet–visible spectroscopy. The results indicate that the phase and morphology of the deposited material are strongly dependent on deposition temperature. UV-vis studies reveal that copper(i) oxide films with a band gap of 2.48 eV may find possible applications in tandem photoelectrochemical devices as light-absorbing material.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献