Technical feasibility of using suboptimal irrigation in maize cropping

Author:

Oliveira Isabela Cristina MartinsORCID,Andrade Camilo de Lelis Teixeira deORCID,Borges Júnior João Carlos FerreiraORCID,Simeão Rosangela MariaORCID,Silva Ana Paula Coelho MadeiraORCID

Abstract

Maize (Zea mays L.) is one of the main cereal crops grown around the world and is widely used as food, feed and raw material in various industries. However, the crop is sensitive to weather conditions, and this causes large variations in yield between crop seasons. Suboptimal irrigation can be used to secure reasonable yields with increased water productivity. For maize grown offseason in the Cerrado biome of Brazil, there is little knowledge about the benefits of suboptimal irrigation. This study was designed to evaluate the effect of different irrigation amounts and two Brachiaria cultivars intercropped with maize on maize grain yield, biomass production for silage and water productivity in the second crop season. The study was conducted at Embrapa Milho e Sorgo Experimental Station, Sete Lagoas, MG, Brazil, in 2018 and 2019. Six irrigation levels were obtained by using a line-source sprinkler irrigation system. The irrigation levels used ranged from 94% to 11% of the cumulative reference evapotranspiration (ET0) in 2018, and from 90% to 34% of ET0 in 2019. Suboptimal irrigation above a certain level did not cause a significant decrease in silage biomass (59% and 71% of the ET0, in 2018 and 2019, respectively) and grain productivity (48% and 60% of the ET0, in 2018 and 2019, respectively). Additionally, there was an increase in crop water productivity and irrigation water productivity, for biomass of both silage and grains. The results demonstrate the potential of suboptimal irrigation as a strategy to reduce water resource usage while maintaining acceptable productivity levels.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3