Fusarium oxysporum f. sp. cubense inoculation and hypoxia alter peroxidase and phenylalanine ammonia lyase activities in nodal roots of banana cultivars (Musa sp.) differing in their susceptibility to Fusarium wilt

Author:

Aguilar E. A.,Turner D. W.,Sivasithamparam K.

Abstract

The impact of O2 deficiency on the interaction of banana roots and the Fusarium wilt pathogen, Fusarium oxysporum f. sp. cubense (Foc), was determined on the basis of changes in the activities of enzymes involved in phenol metabolism (phenylalanine ammonia lyase, PAL, and peroxidase, PER). The root systems of banana cultivars differing in their known field resistance to Fusarium wilt were either inoculated with Foc or not and either continuously aerated, continuously exposed to hypoxia, or exposed to hypoxia for 48 h and then reaerated. Hypoxia stimulated PAL and PER activities in nodal roots of bananas and Foc inoculation stimulated PER activity. Hypoxia, in the presence of Foc, affected PAL activity among cultivars in a manner consistent with their observed field resistance to Fusarium wilt. Foc inoculation increased PER activity in all cultivars over and above that caused by hypoxia alone. Foc inoculation, followed by hypoxia, affected the cultivars differently, with the corresponding changes in PER activity seemingly correlated with their resistance to Fusarium wilt. The resistant cultivar Goldfinger has an inherently higher capability of stimulating the production of PAL and PER enzymes than cv. Williams (normally resistant to Fusarium wilt but succumbs when waterlogged) or cv. Gros Michel (susceptible). While Williams could respond to hypoxia by increasing PAL and PER activities more than Gros Michel, the elicited level of activity may not be enough to prevent disease development under waterlogged conditions. While hypoxic treatment might be a way to stimulate the root’s defence mechanism, it has to be at a level, duration and timing that would enhance PER and PAL activities without causing irreparable damage to root functions. Postanoxic injury, for example, could impair host resistance to wilt. The differences in rapidity and degree of increase in PAL and PER activities under Foc inoculation, followed by hypoxia, appear to be associated with resistance to Fusarium wilt. The breakdown in resistance of Williams (a Cavendish cultivar) observed during waterlogging, needs further investigation, especially if PAL is synthesised in the more aerated parts of the root, away from the stele where the defence mechanism needs to operate.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3